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Namioka and co-Namioka spaces

Theorem 1 (I.Namioka, 1974)
Let X be a strongly countably complete space, Y be a compact space
and f : X ×Y → R be a separately continuous function. Then there
exists an everywhere dense Gδ-set A in X such that the function f is
continuous at every point of the set A×Y .

Definition 1.
f : X ×Y → R has the Namioka property if ∃ dense in X Gδ-set A ⊆ X
such that f is continuous at every point of the set A×Y .

Definition 2.
A Baire space X is called Namioka, if ∀ compact space Y every s. c. f.
f : X ×Y → R has the Namioka property.
A compact space Y is called co-Namioka, if ∀ Baire space X every
s. c. f. f : X ×Y → R has the Namioka property.
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Namioka spaces were studied by many mathematicians using topological
game technique. It was obtained that for wide class of system P

Theorem 2.
Every β-unfavorable space X in Choquet-type game GP is Namioka.

Theorem 3.
- any Valdivia compact is co-Namioka (A. Bouziad, 1994);
- any linearly ordered compact is co-Namioka (M., 2007);
- class of compact co-Namioka spaces is closed over products
(A. Bouziad, 1996).
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Upper Namioka and co-Namioka spaces

Let LU (X ,Y ) stands for the collection of all multi-valued mappings
F : X ×Y → [0, 1] which are lower semi-continuous with respect to the
first variable and upper semi-continuous with respect to the second one.

Theorem 4 (G.Debs, 1986)

Let X be a Baire s., Y be a second countable s. and F ∈ LU (X ,Y ) be
a compact-valued mapping. Then there ∃ a dense in X Gδ-set A ⊆ X
such that F is jointly upper semi-continuous at each point of A×Y .

Definition 3.
Multi-valued map F : X ×Y → R has the upper Namioka property if ∃
dense in X Gδ-set A ⊆ X such that F is jointly upper semi-continuous
at every point of the set A×Y .
A Baire space X is called upper Namioka, if ∀ compact space Y every
F ∈ LU (X ,Y ) has the upper Namioka property.
A compact space Y is called upper co-Namioka, if ∀ Baire space X
every F ∈ LU (X ,Y ) has the upper Namioka property.
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Since any upper Namioka and any upper co-Namioka space are
Namioka and co-Namioka, respectively, the following questions
naturally arise.

Question 1.
Which of Namioka spaces are upper Namioka?

Question 2.
Which of co-Namioka spaces are upper co-Namioka?
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Upper Namioka spaces are trivial

Proposition 1.
Let X and Y be topological spaces, (xs : s ∈ S) be a family of
non-isolated distinct points xs ∈ X such that every set {xs} is closed in
X and (Gs : s ∈ S) be a family of nonempty functionally open pairwise
disjoint sets Gs ⊆ Y . Then there exists a compact-valued mapping
F : X ×Y → [0, 1] which is lower semi-continuous with respect to the
first variable, continuous with respect to the second one and for every
s ∈ S there exists ys ∈ Gs such that Fys is upper discontinuous at xs.

Corollary 1.
Let X be a T1-space. Then the following conditions are equivalent:
(i) X is upper Namioka space;
(ii) the set A of all isolated points of X is dense in X .
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Upper co-Namioka and co-Namioka spaces are completely
different

Proposition 2.
Let |S | = ℵ1, X – s. of all x : S → {0, 1} with at most countable
support, with the topology of the uniform convergence on countable
sets and Y – t. s. with a strictly increasing sequence (Hξ : 0 ≤ ξ ≤ ω1)
of closed in Y sets Hξ. Then ∃ a mapping F ∈ LU (X ,Y ) such that ∀
x ∈ X ∃ yx ∈ Y such that Fyx is upper discontinuous at x.

Corollary 2.
(i) Every subset of upper co-Namioka space is separable.
(ii) Every well-ordered upper co-Namioka compact space is metrizable.
(iii) Every upper co-Namioka Valdivia compact space is metrizable.
(iv) There exists a family (Ys : s ∈ S) of upper co-Namioka spaces Ys
such that the product Y =

∏
s∈S

Ys is not upper co-Namioka.
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Linearly ordered upper co-Namioka spaces

Corollary 3.

Let Y be a linearly ordered compact such that Y 2 is upper
co-Namioka. Then Y is metrizable.

Question 3.
Does there exist a non-metrizable linearly ordered upper co-Namioka
space?
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Definition 4.
Let (X , <) be a linearly ordered set and A ⊆ X . We consider on the set

XA = (X \A)
⋃⋃

x∈A
{(x, 0), (x, 1)}


the following order:

u ≺ v

– if u, v ∈ X \A and u < v;
– if u ∈ X \A, v ∈ {(a, 0), (a, 1)} for some a ∈ A and u < a;
– if u ∈ {(a, 0), (a, 1) for some a ∈ A, v ∈ X \A and a < v;
– if u ∈ {(a, 0), (a, 1) and v ∈ {(a, 0), (a, 1)} for some a, b ∈ A with
a < b;
– if x = (a, 0) and y = (a, 1) for some a ∈ A.
The linearly ordered set (XA,≺) we shall call by doubling of X through
A.
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Notice that [0, 1][0,1] is the "two arrows space".

Proposition 3.
Every separable linearly ordered space Y is homeomorphic to the
doubling of some space X ⊆ [0, 1] through a set A ⊆ X .

T.s. X is called always of the first category if every dense-in-itself
subset A of X is of the first category in itself.

Proposition 4.
Let Z ⊆ [0, 1] be a compact and A ⊆ Z be such that the space Y = ZA
is upper co-Namioka. Then A is always of the first category.

Corollary 4.
The double arrow space is not upper co-Namioka space.

Proposition 5.
There exist a Namioka space X , a co-Namioka space Y and a
compact-valued mapping F ∈ LU (X ,Y ) such that F has not the upper
Namioka property.
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T.s. X is called always of the first category if every dense-in-itself
subset A of X is of the first category in itself.

Proposition 4.
Let Z ⊆ [0, 1] be a compact and A ⊆ Z be such that the space Y = ZA
is upper co-Namioka. Then A is always of the first category.
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The double arrow space is not upper co-Namioka space.
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Open Questions

Question 4.
Does there exist a non-metrizable (linearly ordered) upper co-Namioka
space?

Question 5.
Let Z ⊆ [0, 1] be a compact and A ⊆ Z be an always of the first
category. Is it true that the space X = ZA is upper co-Namioka?

Question 6.
Is it true that the product of finite (countable) family of upper
co-Namioka spaces is upper co-Namioka?
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