Upper Namioka property of multi-valued mappings

Chernivtsi - Kielce

Let X be a strongly countably complete space, Y be a compact space and $f: X \times Y \to \mathbb{R}$ be a separately continuous function. Then there exists an everywhere dense G_{δ} -set A in X such that the function f is continuous at every point of the set $A \times Y$.

Let X be a strongly countably complete space, Y be a compact space and $f: X \times Y \to \mathbb{R}$ be a separately continuous function. Then there exists an everywhere dense G_{δ} -set A in X such that the function f is continuous at every point of the set $A \times Y$.

Definition 1.

 $f: X \times Y \to \mathbb{R}$ has the Namioka property if \exists dense in $X \ G_{\delta}$ -set $A \subseteq X$ such that f is continuous at every point of the set $A \times Y$.

Let X be a strongly countably complete space, Y be a compact space and $f: X \times Y \to \mathbb{R}$ be a separately continuous function. Then there exists an everywhere dense G_{δ} -set A in X such that the function f is continuous at every point of the set $A \times Y$.

Definition 1.

 $f: X \times Y \to \mathbb{R}$ has the Namioka property if \exists dense in $X \ G_{\delta}$ -set $A \subseteq X$ such that f is continuous at every point of the set $A \times Y$.

Definition 2.

A Baire space X is called Namioka, if \forall compact space Y every s. c. f. $f: X \times Y \to \mathbb{R}$ has the Namioka property. A compact space Y is called co-Namioka, if \forall Baire space X every s. c. f. $f: X \times Y \to \mathbb{R}$ has the Namioka property.

Let X be a strongly countably complete space, Y be a compact space and $f: X \times Y \to \mathbb{R}$ be a separately continuous function. Then there exists an everywhere dense G_{δ} -set A in X such that the function f is continuous at every point of the set $A \times Y$.

Definition 1.

 $f: X \times Y \to \mathbb{R}$ has the Namioka property if \exists dense in $X \ G_{\delta}$ -set $A \subseteq X$ such that f is continuous at every point of the set $A \times Y$.

Definition 2.

A Baire space X is called Namioka, if \forall compact space Y every s. c. f. $f: X \times Y \to \mathbb{R}$ has the Namioka property. A compact space Y is called co-Namioka, if \forall Baire space X every s. c. f. $f: X \times Y \to \mathbb{R}$ has the Namioka property.

Theorem 2.

Every β -unfavorable space X in Choquet-type game $G_{\mathcal{P}}$ is Namioka.

Theorem 2.

Every β -unfavorable space X in Choquet-type game $G_{\mathcal{P}}$ is Namioka.

Theorem 3.

- any Valdivia compact is co-Namioka (A. Bouziad, 1994);

Theorem 2.

Every β -unfavorable space X in Choquet-type game $G_{\mathcal{P}}$ is Namioka.

Theorem 3.

- any Valdivia compact is co-Namioka (A. Bouziad, 1994);
- any linearly ordered compact is co-Namioka (M., 2007);

Theorem 2.

Every β -unfavorable space X in Choquet-type game $G_{\mathcal{P}}$ is Namioka.

Theorem 3.

- any Valdivia compact is co-Namioka (A. Bouziad, 1994);
- any linearly ordered compact is co-Namioka (M., 2007);
- class of compact co-Namioka spaces is closed over products (A. Bouziad, 1996).

Let LU(X, Y) stands for the collection of all multi-valued mappings $F: X \times Y \to [0, 1]$ which are lower semi-continuous with respect to the first variable and upper semi-continuous with respect to the second one.

Let LU(X, Y) stands for the collection of all multi-valued mappings $F: X \times Y \to [0, 1]$ which are lower semi-continuous with respect to the first variable and upper semi-continuous with respect to the second one.

Theorem 4 (G.Debs, 1986)

Let X be a Baire s., Y be a second countable s. and $F \in LU(X, Y)$ be a compact-valued mapping. Then there \exists a dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at each point of $A \times Y$.

Let LU(X, Y) stands for the collection of all multi-valued mappings $F: X \times Y \to [0, 1]$ which are lower semi-continuous with respect to the first variable and upper semi-continuous with respect to the second one.

Theorem 4 (G.Debs, 1986)

Let X be a Baire s., Y be a second countable s. and $F \in LU(X, Y)$ be a compact-valued mapping. Then there \exists a dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at each point of $A \times Y$.

Definition 3.

Multi-valued map $F: X \times Y \to \mathbb{R}$ has the upper Namioka property if \exists dense in $X \ G_{\delta}$ -set $A \subseteq X$ such that F is jointly upper semi-continuous at every point of the set $A \times Y$.

Let LU(X, Y) stands for the collection of all multi-valued mappings $F: X \times Y \to [0, 1]$ which are lower semi-continuous with respect to the first variable and upper semi-continuous with respect to the second one.

Theorem 4 (G.Debs, 1986)

Let X be a Baire s., Y be a second countable s. and $F \in LU(X, Y)$ be a compact-valued mapping. Then there \exists a dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at each point of $A \times Y$.

Definition 3.

Multi-valued map $F: X \times Y \to \mathbb{R}$ has the upper Namioka property if \exists dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at every point of the set $A \times Y$.

A Baire space X is called upper Namioka, if \forall compact space Y every $F \in LU(X, Y)$ has the upper Namioka property.

Let LU(X, Y) stands for the collection of all multi-valued mappings $F: X \times Y \to [0, 1]$ which are lower semi-continuous with respect to the first variable and upper semi-continuous with respect to the second one.

Theorem 4 (G.Debs, 1986)

Let X be a Baire s., Y be a second countable s. and $F \in LU(X, Y)$ be a compact-valued mapping. Then there \exists a dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at each point of $A \times Y$.

Definition 3.

Multi-valued map $F: X \times Y \to \mathbb{R}$ has the upper Namioka property if \exists dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at every point of the set $A \times Y$.

A Baire space X is called upper Namioka, if \forall compact space Y every $F \in LU(X, Y)$ has the upper Namioka property.

A compact space Y is called upper co-Namioka, if \forall Baire space X every $F \in LU(X, Y)$ has the upper Namioka property.

Let LU(X, Y) stands for the collection of all multi-valued mappings $F: X \times Y \to [0, 1]$ which are lower semi-continuous with respect to the first variable and upper semi-continuous with respect to the second one.

Theorem 4 (G.Debs, 1986)

Let X be a Baire s., Y be a second countable s. and $F \in LU(X, Y)$ be a compact-valued mapping. Then there \exists a dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at each point of $A \times Y$.

Definition 3.

Multi-valued map $F: X \times Y \to \mathbb{R}$ has the upper Namioka property if \exists dense in X G_{δ} -set $A \subseteq X$ such that F is jointly upper semi-continuous at every point of the set $A \times Y$.

A Baire space X is called upper Namioka, if \forall compact space Y every $F \in LU(X, Y)$ has the upper Namioka property.

A compact space Y is called upper co-Namioka, if \forall Baire space X every $F \in LU(X, Y)$ has the upper Namioka property.

Question 1.

Which of Namioka spaces are upper Namioka?

Question 1.

Which of Namioka spaces are upper Namioka?

Question 2.

Which of co-Namioka spaces are upper co-Namioka?

Question 1.

Which of Namioka spaces are upper Namioka?

Question 2.

Which of co-Namioka spaces are upper co-Namioka?

Upper Namioka spaces are trivial

Proposition 1.

Let X and Y be topological spaces, $(x_s : s \in S)$ be a family of non-isolated distinct points $x_s \in X$ such that every set $\{x_s\}$ is closed in X and $(G_s : s \in S)$ be a family of nonempty functionally open pairwise disjoint sets $G_s \subseteq Y$. Then there exists a compact-valued mapping $F : X \times Y \to [0, 1]$ which is lower semi-continuous with respect to the first variable, continuous with respect to the second one and for every $s \in S$ there exists $y_s \in G_s$ such that F_{y_s} is upper discontinuous at x_s .

Proposition 1.

Let X and Y be topological spaces, $(x_s : s \in S)$ be a family of non-isolated distinct points $x_s \in X$ such that every set $\{x_s\}$ is closed in X and $(G_s : s \in S)$ be a family of nonempty functionally open pairwise disjoint sets $G_s \subseteq Y$. Then there exists a compact-valued mapping $F : X \times Y \to [0, 1]$ which is lower semi-continuous with respect to the first variable, continuous with respect to the second one and for every $s \in S$ there exists $y_s \in G_s$ such that F_{y_s} is upper discontinuous at x_s .

Corollary 1.

Let X be a T_1 -space. Then the following conditions are equivalent:

- (i) X is upper Namioka space;
- (ii) the set A of all isolated points of X is dense in X.

Proposition 2.

Let $|S| = \aleph_1, X - \text{s. of all } x : S \to \{0, 1\}$ with at most countable support, with the topology of the uniform convergence on countable sets and Y - t. s. with a strictly increasing sequence $(H_{\xi} : 0 \leq \xi \leq \omega_1)$ of closed in Y sets H_{ξ} . Then \exists a mapping $F \in LU(X, Y)$ such that $\forall x \in X \exists y_x \in Y$ such that F_{y_x} is upper discontinuous at x.

Proposition 2.

Let $|S| = \aleph_1, X - s$. of all $x : S \to \{0, 1\}$ with at most countable support, with the topology of the uniform convergence on countable sets and Y - t. s. with a strictly increasing sequence $(H_{\xi} : 0 \le \xi \le \omega_1)$ of closed in Y sets H_{ξ} . Then \exists a mapping $F \in LU(X, Y)$ such that $\forall x \in X \exists y_x \in Y$ such that F_{y_x} is upper discontinuous at x.

Corollary 2.

 $\left(i\right)$ Every subset of upper co-Namioka space is separable.

Proposition 2.

Let $|S| = \aleph_1, X - s$. of all $x : S \to \{0, 1\}$ with at most countable support, with the topology of the uniform convergence on countable sets and Y - t. s. with a strictly increasing sequence $(H_{\xi} : 0 \le \xi \le \omega_1)$ of closed in Y sets H_{ξ} . Then \exists a mapping $F \in LU(X, Y)$ such that $\forall x \in X \exists y_x \in Y$ such that F_{y_x} is upper discontinuous at x.

Corollary 2.

- (i) Every subset of upper co-Namioka space is separable.
- (ii) Every well-ordered upper co-Namioka compact space is metrizable.

Proposition 2.

Let $|S| = \aleph_1, X - \text{s. of all } x : S \to \{0, 1\}$ with at most countable support, with the topology of the uniform convergence on countable sets and Y - t. s. with a strictly increasing sequence $(H_{\xi} : 0 \leq \xi \leq \omega_1)$ of closed in Y sets H_{ξ} . Then \exists a mapping $F \in LU(X, Y)$ such that $\forall x \in X \exists y_x \in Y$ such that F_{y_x} is upper discontinuous at x.

Corollary 2.

(i) Every subset of upper co-Namioka space is separable.

- (ii) Every well-ordered upper co-Namioka compact space is metrizable.
- (*iii*) Every upper co-Namioka Valdivia compact space is metrizable.

Proposition 2.

Let $|S| = \aleph_1, X - \text{s. of all } x : S \to \{0, 1\}$ with at most countable support, with the topology of the uniform convergence on countable sets and Y - t. s. with a strictly increasing sequence $(H_{\xi} : 0 \leq \xi \leq \omega_1)$ of closed in Y sets H_{ξ} . Then \exists a mapping $F \in LU(X, Y)$ such that $\forall x \in X \exists y_x \in Y$ such that F_{y_x} is upper discontinuous at x.

Corollary 2.

(i) Every subset of upper co-Namioka space is separable.

(*ii*) Every well-ordered upper co-Namioka compact space is metrizable. (*iii*) Every upper co-Namioka Valdivia compact space is metrizable. (*iv*) There exists a family ($Y_s : s \in S$) of upper co-Namioka spaces Y_s such that the product $Y = \prod_{s \in S} Y_s$ is not upper co-Namioka.

Linearly ordered upper co-Namioka spaces

Corollary 3.

Let Y be a linearly ordered compact such that Y^2 is upper co-Namioka. Then Y is metrizable.

Linearly ordered upper co-Namioka spaces

Corollary 3.

Let Y be a linearly ordered compact such that Y^2 is upper co-Namioka. Then Y is metrizable.

Question 3.

Does there exist a non-metrizable linearly ordered upper co-Namioka space?

Definition 4.

Let (X, <) be a linearly ordered set and $A \subseteq X$. We consider on the set

$$X_A = (X \setminus A) \bigcup \left(\bigcup_{x \in A} \{ (x, 0), (x, 1) \} \right)$$

the following order:

 $u \prec v$

- if
$$u, v \in X \setminus A$$
 and $u < v$;
- if $u \in X \setminus A$, $v \in \{(a, 0), (a, 1)\}$ for some $a \in A$ and $u < a$;
- if $u \in \{(a, 0), (a, 1) \text{ for some } a \in A, v \in X \setminus A \text{ and } a < v$;
- if $u \in \{(a, 0), (a, 1) \text{ and } v \in \{(a, 0), (a, 1)\}$ for some $a, b \in A$ with
 $a < b$;
- if $x = (a, 0)$ and $y = (a, 1)$ for some $a \in A$.
The linearly ordered set (X_A, \prec) we shall call by doubling of X through
A.

Proposition 3.

Every separable linearly ordered space Y is homeomorphic to the doubling of some space $X \subseteq [0, 1]$ through a set $A \subseteq X$.

Proposition 3.

Every separable linearly ordered space Y is homeomorphic to the doubling of some space $X \subseteq [0, 1]$ through a set $A \subseteq X$.

T.s. X is called always of the first category if every dense-in-itself subset A of X is of the first category in itself.

Proposition 3.

Every separable linearly ordered space Y is homeomorphic to the doubling of some space $X \subseteq [0, 1]$ through a set $A \subseteq X$.

T.s. X is called always of the first category if every dense-in-itself subset A of X is of the first category in itself.

Proposition 4.

Let $Z \subseteq [0, 1]$ be a compact and $A \subseteq Z$ be such that the space $Y = Z_A$ is upper co-Namioka. Then A is always of the first category.

Proposition 3.

Every separable linearly ordered space Y is homeomorphic to the doubling of some space $X \subseteq [0, 1]$ through a set $A \subseteq X$.

T.s. X is called always of the first category if every dense-in-itself subset A of X is of the first category in itself.

Proposition 4.

Let $Z \subseteq [0, 1]$ be a compact and $A \subseteq Z$ be such that the space $Y = Z_A$ is upper co-Namioka. Then A is always of the first category.

Corollary 4.

The double arrow space is not upper co-Namioka space.

Proposition 3.

Every separable linearly ordered space Y is homeomorphic to the doubling of some space $X \subseteq [0, 1]$ through a set $A \subseteq X$.

T.s. X is called always of the first category if every dense-in-itself subset A of X is of the first category in itself.

Proposition 4.

Let $Z \subseteq [0, 1]$ be a compact and $A \subseteq Z$ be such that the space $Y = Z_A$ is upper co-Namioka. Then A is always of the first category.

Corollary 4.

The double arrow space is not upper co-Namioka space.

Proposition 5.

There exist a Namioka space X, a co-Namioka space Y and a compact-valued mapping $F \in LU(X, Y)$ such that F has not the upper Namioka property.

Open Questions

Question 4.

Does there exist a non-metrizable (linearly ordered) upper co-Namioka space?

Question 4.

Does there exist a non-metrizable (linearly ordered) upper co-Namioka space?

Question 5.

Let $Z \subseteq [0, 1]$ be a compact and $A \subseteq Z$ be an always of the first category. Is it true that the space $X = Z_A$ is upper co-Namioka?

Question 4.

Does there exist a non-metrizable (linearly ordered) upper co-Namioka space?

Question 5.

Let $Z \subseteq [0, 1]$ be a compact and $A \subseteq Z$ be an always of the first category. Is it true that the space $X = Z_A$ is upper co-Namioka?

Question 6.

Is it true that the product of finite (countable) family of upper co-Namioka spaces is upper co-Namioka?

- 1. Bouziad A. Notes sur la propriete de Namioka Trans. Amer. Math. Soc. 344, 2 (1994), 873-883.
- 2. Bouziad A. The class of co-Namioka spaces is stable under product Proc. Amer. Math. Soc. 124, 3 (1996) 983-986.
- 3. Mykhaylyuk V.V. Namioka spaces and topological games Bull. Austral. Math. Soc. 73 (2006), 263-272.
- 4. Mykhaylyuk V. Upper Namioka property of compact-valued mappings, Top. Appl. 229 (2017), 70-84
- 5. Namioka I. Separate continuity and joint continuity Pacif. J. Math. 51, 2 (1974), 515-531.

Thank you